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Abstract. In this talk, I will present new dynamic inequalities based on the
application of the time scale version of Hardy�s type inequality on a �nite
interval [a; b]T where T is a time scale. Next, we will speak about Gehring�s
type inequalities on time scales by employing the obtained inequality. As an
application of Gehring inequalities, we will prove some interpolation. Next,
we will prove a dynamic inequality of Shum�s type on a time scale T. The
proof is new and di¤erent from the proof due to Shum. [Canad. Math. Bull.
14 (1971), 225-230]. Next, we prove some new integrability theorems which
as a special case, when T = R, contain the results due to Muckenhoupt [Tran.
Amer. Math. Soc. 165 (1972), 207-226] and the results due to Bojarski,
Sbordone and Wik. [Studia Mat. VII, 10 (1992), 155-163]. By employing
theorems, we will prove a higher integrability result which proves that the
space Lq�(0; T ]T of nonincreasing functions will be in the space L

p
�(0; T ]T for

p > q: The results contain, as a special case, the integrability results due to
Alzer [J. Math. Anal. Appl. 190 (1995), 774-779]. When T = N our results
are essentially new and can be applied on di¤erent types of time scales.
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1. Introduction

In 1972 Muckenhoupt [16] proved a sharp higher integrability result for de-
creasing functions from reverse mean value integral inequality as follows: Let
f(t) be positive and decreasing on (0; T ] � R and assume that there exists A > 1
such that

(1.1)
1

t

Z t

0
f(s)ds � Af(t), for all t 2 (0; T ];

then, for every p 2 [1; A=(A� 1)]; the function f belongs to Lp(0; T ] and

(1.2)
1

T

Z T

0
fp(t)dt � A

A� p(A� 1)

�
1

T

Z T

0
f(s)ds

�p
:

A function verifying (1.1) is called an A1�weight Muckenhoupt. In 1973 Gehring
in [11] extended the result of Muckenhoupt and proved that if f 2 Lq(I), q > 1
and satis�es the reversed Hölder�s inequality

(1.3)
�
1

jIj

Z
I
f qdx

�1=q
� C 1

jIj

Z
I
fdx;
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for any cube I with sides parallel to the axes with measure jIj and C > 1, then
f 2 Lp(I), for p > q and there exists K > 1 such that

(1.4)
�
1

jIj

Z
I
fpdx

�1=p
� K 1

jIj

Z
I
fdx:

The reverse of this inequality appears, for example, in the paper [11] by Gehring
in his remarkable theorem showing higher integrability of a function verifying the
reverse Hölder�s inequality (1.3). Reverse integral inequalities (cf. [10, 11, 20])
and its many variants and extensions play important roles in nonlinear PDEs,
in the study of weighted norm inequalities for the classical operators of har-
monic analysis, as well as in functional analysis. These inequalities also appear
in di¤erent �elds of analysis such as quasiconformal mappings, weighted Sobolev
imbedding theorem and regularity theory of variational problems (we refer the
reader to the papers [14, 15]).

In 1990 Nania [17] extended the results of Muckenhoupt and Gehring and
proved a higher integrability theorem for decreasing functions by using the in-
equality

(1.5)
1

t

Z t

0
f q(s)ds � Cf q�1(t)1

t

Z t

0
f(s)ds; for all t 2 (0; T ];

where the constants C > 1 and q > 1. The inequality (1.5) is the converse of the
inequality

(1.6) f q�1(t)
1

t

Z t

0
f(s)ds � 1

t

Z t

0
f q(s)ds; for all t 2 (0; T ];

which holds for all nonnegative and decreasing function f 2 Lq(0; T ]. In partic-
ular Nania proved that if (1.5) holds, then for every p 2 [q; q + "] the function
f 2 Lp(0; T ] and

(1.7)
�
1

T

Z T

0
fp(t)dt

�1=p
� K

�
1

T

Z T

0
f(s)ds

�
;

where " = q=(�� 1), � = Cq(q � 1);

K =

�
�r+1

�� r(�� 1)

�1=p
; and r = p=q:

The inequality (1.7) has been proved by employing the classical Hardy integral
inequality (see [12])

(1.8)
Z T

0

�
1

t

Z t

0
f(s)ds

�p
dt �

�
p

p� 1

�p Z T

0
fp(t)dt, p > 1:

In 1992 Bojarski, Sbordone and Wik [8] improved the Muckenhoupt inequality
by excluding the monotonicity condition on the function f with a best constant.
The proof that has been given in [8] has been done by using the rearrangement
of the function over the interval I: In particular, they proved that if f satis�es
(1.1) with c � 1 then

(1.9)
1

jIj

Z
I
fp(t)dt � c1�p

c� p(c� 1)

�
1

jIj

Z
I
f(s)ds

�p
, for p < c=(c� 1):
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In 1995 Alzer [5] proved a new re�nement of Nania�s inequality by using the
following inequality
(1.10)Z T

0

�
1

t

Z t

0
f(s)ds

�p
�t+

p

p� 1T
1�p

�Z T

0
f(t)dt

�p
�
�

p

p� 1

�p Z T

0
fp(t)dt;

which has been been proved by Shum in [19]. In particular, Alzer proved that if
f is a positive decreasing function on (0; T ) satisfying (1.5) for all t 2 (0; T ) then
the function f 2 Lp(0; T ] and

(1.11)
�
1

T

Z T

0
fp(t)dt

�1=p
� K1

�
1

T

Z T

0
f q(s)ds

�1=q
;

holds with a new constant K1 smaller than K and there exists a number � > "
such that the inequality (1.11) holds not only for all p 2 [q; q + "] but for all
p 2 [q; q + �].

In recent years the study of dynamic inequalities on time scales has received a
lot of attention, for more details we refer to the books [2, 3]. The general idea is
to prove a result for an inequality where the domain of the unknown function is
a so-called time scale T, which is an arbitrary nonempty closed subset of the real
numbers R. This idea goes back to its founder Stefan Hilger [13] which started
the study of dynamic equations on time scales. The study of dynamic inequalities
on time scales helps avoid proving results twice - once for di¤erential inequality
and once again for di¤erence inequality. The three most popular examples of
calculus on time scales are di¤erential calculus, di¤erence calculus, and quantum
calculus, i.e., when T = R; T = N and T = qN0 = fqt : t 2 N0g where q > 1.
For more details of time scale analysis we refer the reader to the two books by
Bohner and Peterson [6], [7] which summarize and organize much of the time
scale calculus.

Following this trend, we will prove new dynamic inequalities on time scales
and use to prove some new integrability theorems. The rest of the paper is
organized as follows: In Section 2, we recall some de�nitions and notations on
time scales which will be used throughout the paper. In Section 3, �rst we prove
a time scale version of Muckenhoupt�s inequality, Bojarski, Sbordone and Wik
inequality and Shum�s inequality on time scales. Second, we apply Muckenhoupt�s
type inequality and Shum�s type inequality on time scales to prove a new higher
integrability results of Alzer�s type on time scales. As special cases we will derive
discrete versions from the obtained inequalities which are essentially new and the
other di¤erent time scales will be left to the reader due to the limited space.

2. Preliminaries On Time scales

Let T be a time scale, which is an arbitrary nonempty closed subset of the
real numbers. For t 2 T, we de�ne the forward jump operator � : T ! T by
�(t) := inffs 2 T : s > tg. A time scale T equipped with the order topology
is metrizable and is a K��space; i.e. it is a union of at most countably many
compact sets. We assume throughout that T has the topology that it inherits
from the standard topology on the real numbers R:
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The mapping � : T ! R+ = [0;1) such that �(t) := �(t) � t is called the
graininess. For any function f : T! R the notation f�(t) denotes f(�(t)): De�ne
f�(t) to be the number (if it exists) with the property that given any � > 0 there
is a neighborhood U of t with

j[f(�(t))� f(s)]� f�(t)[�(t)� s]j � �j�(t)� sj; for all s 2 U:
In this case, we say f�(t) is the (delta) derivative of f at t and that f is (delta)
di¤erentiable at t.
We will refer to the (delta) integral which we can de�ne as follows. If F�(t) =

f(t), then the Cauchy (delta) integral of g is de�ned by
R t
a f(s)�s := F (t)�F (a):

If g 2 Crd(T); then the Cauchy integral F (t) :=
R t
t0
f(s)�s exists, t0 2 T, and

satis�es F�(t) = f(t), t 2 T: Note that if T = R, then �(t) = t; �(t) = 0; andZ b

a
f(t)�t =

Z b

a
f(t)dt:

If T = Z, then �(t) = t+ 1; �(t) = 1; andZ b

a
f(t)�t =

b�1X
t=a

f(t):

If T =hZ, h > 0; then �(t) = t+ h; �(t) = h; andZ b

a
f(t)�t =

b�a�h
hX
k=0

f(a+ kh)h:

If T = ft : t = qk; k 2 N0; q > 1g; then �(t) = qt; �(t) = (q � 1)t; �(t) = qt;
�(t) = (q � 1)t; andZ 1

t0

f(t)�t =

1X
k=n0

f(qk)�(qk); where t0 = qn0 :

If T is an arbitrary time scale and the interval [a; b) � T contains only isolated
points, then Z b

a
f(t)�t =

X
t2[a;b)

(�(t)� t)f(t):

We will make use of the following product and quotient rules for the derivative
of the product fg and the quotient f=g (where gg� 6= 0, here g� = g � �) of two
di¤erentiable functions f and g

(2.1) (fg)� = f�g + f�g� = fg� + f�g�; and
�
f

g

��
=
f�g � fg�

gg�
:

The following simple consequence of Keller�s chain rule (see [6, Theorem 1.90])
which is needed in the proof of the main results is given by

(2.2) (u
(t))� = 


1Z
0

[hu� + (1� h)u]
�1 dhu�(t);

Without loss of generality, we assume that supT =1, and de�ne the time scale
interval [a; b]T by [a; b]T := [a; b] \ T: We say that f : [0; T ]T ! R belongs to



MUCKENHOUPT, SHUM AND ALZER INEQUALITIES 5

Lp�((0; T ]T) provided that either kfkp =
R T
0 jf j

p�t < 1; if 1 < p < 1; or there
exists a constant C 2 R+ such that kfk1 = jf j � C, on I if p = +1: The
integration by parts formula is given by

(2.3)
Z b

a
u(t)v�(t)�t = [u(t)v(t)]ba �

Z b

a
u�(t)v�(t)�t:

To prove the main results, we will use the following Hölder inequality [?, Theorem
6.13]: Let a, b 2 T. For u; v 2 Crd(T, R); we have

(2.4)
Z b

a
ju(t)v(t)j�t �

�Z b

a
ju(t)jq�t

� 1
q
�Z b

a
jv(t)jp�t

� 1
p

;

where p > 1 and 1=p+ 1=q = 1:
Throughout this paper, we will assume (usually without mentioning) that the

functions in the statements of the theorems are nonnegative and rd-continuous
functions, ��di¤erentiable, locally delta integrable and the integrals considered
are assumed to exist (�nite i.e. convergent).
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